Asymptotics of the Best Constant in a Certain Markov-Type Inequality

P. Dörfler
Institut für Mathematik und Angewandte Geometrie, Montanuniversität Leoben, A-8700 Leoben, Austria
E-mail: Peter.Doerfler@unileoben.ac.at
Communicated by Tamás Erdélyi

Received December 6, 2000; accepted September 12, 2001

Let $\|\cdot\|$ be the weighted L^{2}-norm with Laguerre weight $w(t)=t^{\alpha} e^{-t}, \alpha>-1$. Let P_{n} be the set of all complex polynomials whose degree does not exceed n, and $\gamma_{n}(\alpha):=\sup _{p \in P_{n}}\left(\left\|p^{\prime}\right\| /\|p\|\right)$. We show that $\gamma_{n}(\alpha) / n \rightarrow\left(j_{(\alpha-1) / 2,1}\right)^{-1}$ as $n \rightarrow \infty$, where $j_{v, 1}$ is the first positive zero of the Bessel function $J_{v}(z)$. © 2002 Elsevier Science (USA)

Key Words: Markov inequality; L^{2}-norm; Laguerre weight; Pollaczek polynomials; best constant; asymptotics; Bessel functions.

1

Let P_{n} denote the set of all complex polynomials whose degree does not exceed n. For $p \in P_{n}$ and arbitrary but fixed $\alpha \in \mathbb{R}, \alpha>-1$, let the weighted L^{2}-norm with (generalized) Laguerre weight be defined by

$$
\|p\|:=\left\{\int_{0}^{\infty}|p(t)|^{2} t^{\alpha} e^{-t} d t\right\}^{1 / 2} .
$$

In this paper we consider

$$
\begin{equation*}
\gamma_{n}(\alpha):=\sup _{p \in P_{n}} \frac{\left\|p^{\prime}\right\|}{\|p\|}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

the best possible constant in the Markov type inequality

$$
\left\|p^{\prime}\right\| \leqslant c\|p\|, \quad p \in P_{n}
$$

If $\alpha=0$, the case of the classical Laguerre weight, $\gamma_{n}(0)$ is well known.

In 1944, Schmidt [13] obtained estimates that are asymptotically sharp. Some years later, Turán [14] found the exact value

$$
\gamma_{n}(0)=\left(2 \sin \frac{\pi}{4 n+2}\right)^{-1}, \quad n \in \mathbb{N} .
$$

In particular, the above-mentioned results yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\gamma_{n}(0)}{n}=\frac{2}{\pi} . \tag{2}
\end{equation*}
$$

For a different proof of (2) see also [5].
If $\alpha>-1$ is arbitrary, little is known. Dörfler [6] presented lower and upper bounds for $\gamma_{n}(\alpha)$,

$$
\begin{equation*}
\frac{n(n+1)}{2(\alpha+1)}-\frac{4(n-1)}{3(\alpha+2)}-\frac{(n-1)(n-2)}{2(\alpha+3)} \leqslant\left[\gamma_{n}(\alpha)\right]^{2} \leqslant \frac{n(n+1)}{2(\alpha+1)}, \quad n \in \mathbb{N}, \tag{3}
\end{equation*}
$$

from which he obtained

$$
\begin{equation*}
\frac{1}{\sqrt{(\alpha+1)(\alpha+3)}} \leqslant \liminf _{n \rightarrow \infty} \frac{\gamma_{n}(\alpha)}{n} \leqslant \limsup _{n \rightarrow \infty} \frac{\gamma_{n}(\alpha)}{n} \leqslant \frac{1}{\sqrt{2(\alpha+1)}} . \tag{4}
\end{equation*}
$$

The bounds (3) were derived by a method which had been developed in [4], viewing γ_{n} as an eigenvalue of a certain matrix. By an analogous method, in [10, pp. 574-576], the following result was achieved: $1 /\left[\gamma_{n}(\alpha)\right]^{2}$ is the smallest zero of the polynomial $T_{n}(x)=T_{n}(x, \alpha)$ which is defined recursively by

$$
\begin{align*}
& T_{n+1}(x)=\left(x-d_{n}\right) T_{n}(x)-\lambda_{n}^{2} T_{n-1}(x), \quad n \geqslant 0 ; \\
& T_{-1}(x):=0, T_{0}(x):=1 ; \\
& d_{0}:=1+\alpha, d_{n}:=2+\frac{\alpha}{n+1}, n \geqslant 1 ; \tag{5}\\
& \lambda_{0}>0 \text { arbitrary }, \lambda_{n}^{2}:=1+\frac{\alpha}{n}, n \geqslant 1 .
\end{align*}
$$

The $T_{n}(x, \alpha)$ constitute a system of monic orthogonal polynomials for each $\alpha>-1$ (which is obvious by Favard's theorem [3, p. 21]).

Before presenting our theorem, an interesting related problem should be mentioned. If P_{n} is restricted to the class W_{n} of (real) polynomials of exact
degree n, all coefficients of which are nonnegative, the analogous problem for $C_{n}(\alpha):=\sup _{p \in W_{n}}\left(\left\|p^{\prime}\right\| /\|p\|\right)$ was solved by Milovanović [9]

$$
C_{n}(\alpha)= \begin{cases}1 /(2+\alpha)(1+\alpha), & -1<\alpha \leqslant \alpha_{n}, \\ n^{2} /(2 n+\alpha)(2 n+\alpha-1), & \alpha_{n} \leqslant \alpha<\infty,\end{cases}
$$

where $\alpha_{n}:=\frac{1}{2}(n+1)^{-1}\left[\left(17 n^{2}+2 n+1\right)^{1 / 2}-3 n+1\right]$. Notice that $C_{n}(\alpha)$ is bounded for each $\alpha>-1$ as $n \rightarrow \infty$ which is rather surprising in view of (4).

2

We are ready now to state our theorem.
Theorem. Let $\gamma_{n}(\alpha)$ be defined as in (1). Let $j_{v, 1}$ be the first positive zero of the Bessel function of the first kind of order $v, J_{v}(z)$. Then

$$
\lim _{n \rightarrow \infty} \frac{\gamma_{n}(\alpha)}{n}=\left(j_{\frac{\alpha-1}{2}, 1}\right)^{-1} .
$$

Remark 1. Since $j_{v, 1}=\pi / 2$ if $v=-1 / 2$, the theorem yields (2) in the case $\alpha=0$.

Concerning (4), we would like to mention without proof that $\left(j_{v, 1}\right)^{-1}$ is quite close to the arithmetic mean of the bounds given there if $v=(\alpha-1) / 2$.

Remark 2. It seems to be very difficult to derive the exact value of $\gamma_{n}(\alpha)$ for arbitrary n and α. The reason is that the knowledge of $\gamma_{n}(\alpha)$ would imply the knowledge of a zero of certain Pollaczek polynomials - as the proof of our theorem will show. To know such a zero, however, would be a very surprising result.

The proof of the above theorem requires several preparatory lemmas.
Lemma 1. Let $P_{n}^{\lambda}(x ; a, b)$ be the nth Pollaczek polynomial as defined in [3, p. 184] and $T_{n}(x, \alpha)$ the polynomial as defined in (5) and $\alpha \in \mathbb{R}, \alpha \neq 0$. Then

$$
\begin{equation*}
T_{n}(z, \alpha)=(-1)^{n} \frac{(n+1)}{\alpha} P_{n+1}^{\frac{\alpha}{2}}\left(1-\frac{z}{2} ;-\frac{\alpha}{2}, \frac{\alpha}{2}\right) \tag{6}
\end{equation*}
$$

holds for all $z \in \mathbb{C}$ and $n \geqslant-1$.

Proof. The Pollaczek polynomials $P_{n}(x):=P_{n}^{\lambda}(x ; a, b)$ are defined by the recurrence formula [3, p. 184]

$$
\begin{align*}
(n+1) P_{n+1}(x) & =2[(a+\lambda+n) x+b] P_{n}(x)-(n+2 \lambda-1) P_{n-1}(x), \quad n \geqslant 0 \\
P_{-1}(x) & :=0, \quad P_{0}(x):=1 \tag{7}
\end{align*}
$$

Inserting for λ, a and b the respective values and substituting $1-x / 2$ for x in the above formula, a comparison with (5) leads to (6) for $z=x \in \mathbb{R}$. From this, the assertion follows by analytic continuation.

Remark 3. The choice $\lambda=-a=b=\alpha / 2$ of the parameters in $P_{n}^{\lambda}(x ; a, b)$ causes the corresponding Pollaczek polynomials to be no longer orthogonal. In particular, the nth polynomial $P_{n}(x)$ has degree $n-1$ for $n \geqslant 1$. This is the reason why in (6) T_{n} is represented by P_{n+1}.

Lemma 2. Let ${ }_{2} F_{1}(a, b ; c ; z)$ be the hypergeometric function and $\lambda \in \mathbb{R}$, $\lambda>0$. Then

$$
\begin{equation*}
P_{n}^{\lambda}(\cos w ;-\lambda, \lambda)=\frac{(2 \lambda)_{n}}{n!} e^{i n w}{ }_{2} F_{1}\left(-n, \lambda\left(1+i \tan \frac{w}{2}\right) ; 2 \lambda ; 1-e^{-2 i w}\right) \tag{8}
\end{equation*}
$$

holds for all $w \in \mathbb{C}$ and $n \geqslant 0$. (If $w=(2 m+1) \pi, m \in \mathbb{Z}$, then the right-hand side of (8) may be defined by its limit as $w \rightarrow(2 m+1) \pi$.)

Proof. By [8, p. 462] the polynomials $P_{n}^{\lambda}(x ;-\lambda+\varepsilon, \lambda)$ are orthogonal if $\varepsilon>0$ and have the representation

$$
\begin{equation*}
P_{n}^{\lambda}(\cos \theta ;-\lambda+\varepsilon, \lambda)=\frac{(2 \lambda)_{n}}{n!} e^{i n \theta}{ }_{2} F_{1}\left(-n, \lambda+i t(\theta) ; 2 \lambda ; 1-e^{-2 i \theta}\right), \tag{9}
\end{equation*}
$$

where $t(\theta)=[\lambda(1-\cos \theta)+\varepsilon \cos \theta] / \sin \theta$. From (7) we deduce that the lefthand side of (9) depends continuously on ε. Obviously, the same is true for the right-hand side of (9), because ${ }_{2} F_{1}$ is a finite sum of finite products in ε. So, as $\varepsilon \rightarrow 0$, (9) yields (8) for $w=\theta, 0 \leqslant \theta<\pi$. Finally, analytic continuation gives the desired result for all $w \neq(2 m+1) \pi, m \in \mathbb{Z}$. These points, however, are removable singularities, because the left-hand side of (8) is an entire function. Hence, the limits as $w \rightarrow(2 m+1) \pi, m \in \mathbb{Z}$, exist and the right-hand side of (8) must be replaced by the limits in these points.

The following lemma is based on work done by Ismail [8].

Lemma 3. Let $J_{v}(z)$ be the Bessel function of the first kind of order v and $\lambda \in \mathbb{R}, \lambda>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{1-2 \lambda} P_{n}^{\lambda}\left(\cos \frac{z}{n} ;-\lambda, \lambda\right)=\frac{\sqrt{\pi} 2^{1-2 \lambda}}{\Gamma(\lambda)}\left(\frac{z}{2}\right)^{\frac{1}{2}-\lambda} J_{\lambda-\frac{1}{2}}(z) \tag{10}
\end{equation*}
$$

pointwise for all $z \in \mathbb{C}$.
Proof. If Re $a<1$ and $\operatorname{Re} c>\operatorname{Re} b>0$, the hypergeometric function admits the representation [11, Chap. 5, Sect. 9]

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} d t \tag{11}
\end{equation*}
$$

for all $z \in \mathbb{C}$. In view of (8) set $a:=-n, b:=\lambda(1+i \tan (w / 2)), c:=2 \lambda$. Then Re $a<1$ and, obviously, there exists a number $\rho>0$ such that $\operatorname{Re} c>\operatorname{Re} b>0$ if $|w|<\rho$. Thus, Lemma 2 and (11) yield an integral representation for $P_{n}^{\lambda}(\cos w ;-\lambda, \lambda)$ if $|w|<\rho$. This representation-with the respective choice of the parameters a and b-is the starting point of the considerations in [8, Chap. 2]. So, we may proceed in a quite similar way as in [8] and omit details here.

First set $t=:(1+v) / 2$; this gives

$$
\begin{gather*}
\frac{n!\Gamma\left(\lambda\left(1+i \tan \frac{w}{2}\right)\right) \Gamma\left(\lambda\left(1-i \tan \frac{w}{2}\right)\right)}{2^{1-2 \lambda} \Gamma(2 \lambda+n)(\cos w)^{n}} \\
\quad \times P_{n}^{\lambda}(\cos w ;-\lambda, \lambda)=A_{n}(w)+A_{n}(-w), \tag{12}
\end{gather*}
$$

where

$$
A_{n}(w):=\int_{0}^{1}\left(1-v^{2}\right)^{\lambda-1}\left(\frac{1+v}{1-v}\right)^{i \lambda \tan \frac{w}{2}}(1-i v \tan w)^{n} d v .
$$

Equation (12) holds if $|w|<\rho$.
Let $z \in \mathbb{C}$ be arbitrary but fixed, and replace w by z / n in (12). Since $z / n \rightarrow 0, \tan (z / 2 n) \rightarrow 0$ and

$$
(1-i v \tan (z / n))^{n}=\exp \left[-i v z+\mathcal{O}\left(n^{-1}\right)\right]
$$

as $n \rightarrow \infty$, we conclude that

$$
A_{n}(z / n) \rightarrow \int_{0}^{1}\left(1-v^{2}\right)^{\lambda-1} e^{-i v z} d v
$$

and, consequently,

$$
A_{n}(z / n)+A_{n}(-z / n) \rightarrow 2 \int_{0}^{1}\left(1-v^{2}\right)^{\lambda-1} \cos (v z) d v
$$

as $n \rightarrow \infty$. This integral can be expressed by a Bessel function [1, 9.1.20]. Thus, we finally arrive at

$$
\lim _{n \rightarrow \infty}\left[A_{n}(z / n)+A_{n}(-z / n)\right]=\sqrt{\pi} \Gamma(\lambda)\left(\frac{z}{2}\right)^{\frac{1}{2}-\lambda} J_{\lambda-\frac{1}{2}}(z) .
$$

As to the left-hand side of (12) (w replaced by z / n), the following asymptotic relations hold as $n \rightarrow \infty: n!/ \Gamma(2 \lambda+n) \sim n^{1-2 \lambda}[1,6.1 .46]$ and, obviously, $[\cos (z / n)]^{n} \rightarrow 1$.

The combination of these results establishes (10) and completes the proof of the lemma.

The function $(z / 2)^{-v} J_{v}(z)$ is entire in z for all $v \in \mathbb{C}$ [11, p.57]. Thus, in (10) a sequence of entire functions converges pointwise to a limit function which is entire, too. But yet, the convergence of holomorphic functions to a holomorphic limit function is not necessarily uniform on compact subsets [12, Chap. 12, Sect. 3].

In our next lemma we deal with the functions T_{n} and show the respective uniform convergence on compact subsets of \mathbb{C}.

Lemma 4. Let $T_{n}(x, \alpha)$ be the polynomials as defined in (5) and $\alpha \in \mathbb{R}$, $\alpha>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{(n+1)^{\alpha}} T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}, \alpha\right)=\frac{\sqrt{\pi}}{2^{\alpha} \Gamma\left(\frac{\alpha+2}{2}\right)}\left(\frac{z}{2}\right)^{\frac{1-\alpha}{2}} J_{\frac{\alpha-1}{2}}(z) \tag{13}
\end{equation*}
$$

holds uniformly on compact subsets of the complex z plane.
Proof. Let α be fixed and $T_{n}(z, \alpha)=: T_{n}(z)$. From Lemma 1 and the well known identity $2-2 \cos w=4 \sin ^{2}(w / 2), w \in \mathbb{C}$, we deduce that

$$
\begin{equation*}
T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}\right)=(-1)^{n} \frac{(n+1)}{\alpha} P_{n+1}^{\frac{\alpha}{2}}\left(\cos \frac{z}{n+1} ;-\frac{\alpha}{2}, \frac{\alpha}{2}\right) \tag{14}
\end{equation*}
$$

holds for all $z \in \mathbb{C}$ and $n \geqslant 0$. From this, (13) can be derived easily by the aid of Lemma 3-for the present, the convergence understood as a pointwise one.

Concerning the uniform convergence on compact subsets of \mathbb{C} we show that the respective sequence of functions is uniformly bounded on compact subsets of \mathbb{C}. In view of that we first derive a suitable representation of T_{n}.

Lemma 2 and (14) lead to a representation of T_{n} by the hypergeometric function ${ }_{2} F_{1}$. Then, the notation of ${ }_{2} F_{1}$ as a finite sum [1, 15.4.1] and the two obvious identities

$$
\frac{(n+1)(\alpha)_{n+1}}{\alpha(n+1)!}=\frac{(\alpha+1)_{n}}{n!}, \frac{(-n-1)_{k}}{k!}=\binom{n+1}{k}(-1)^{k}, \quad n \geqslant 0,0 \leqslant k \leqslant n+1,
$$

yield the representation

$$
\begin{align*}
T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}\right)= & (-1)^{n} \frac{(\alpha+1)_{n}}{n!} e^{i z} \tag{15}\\
& \times \sum_{k=0}^{n+1}\binom{n+1}{k} \frac{\left(\frac{\alpha}{2}\left(1+i \tan \frac{z}{2 n+2}\right)\right)_{k}}{(\alpha)_{k}}(-1)^{k}\left(1-e^{-\frac{2 i}{n+1}}\right)^{k}
\end{align*}
$$

for all $z \in \mathbb{C}$ and $n \geqslant 0$. (As to the points $z=(n+1)(2 m+1) \pi, m \in \mathbb{Z}$, see Lemma 2.)

Now let K be an arbitrary but fixed compact subset of \mathbb{C} and $z \in K$. Since K is compact, there exists a number $N_{1} \in \mathbb{N}$ such that $|1+i \tan (z /(2 n+2))| \leqslant$ $2 \forall z \in K$ and, consequently,

$$
\frac{\left|\left(\frac{\alpha}{2}\left(1+i \tan \frac{z}{2 n+2}\right)\right)_{k}\right|}{\left|(\alpha)_{k}\right|} \leqslant 1, \quad 0 \leqslant k \leqslant n+1,
$$

if $n>N_{1}$. (Observe that $\alpha \in \mathbb{R}, \alpha>0$ by assumption!) Hence, passing over to the absolute values on either side of (15), the Binomial Theorem can be applied to the sum. Thus, (15) together with the above estimates imply that

$$
\begin{equation*}
\left|T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}\right)\right| \leqslant \frac{(\alpha+1)_{n}}{n!}\left|e^{i z}\right|\left(1+\left\lvert\, 1-e^{\left.-\frac{2 i z}{n+1} \right\rvert\,}\right.\right)^{n+1}, \quad n>N_{1} . \tag{16}
\end{equation*}
$$

Obviously $\left|1-e^{-2 i z /(n+1)}\right| \leqslant 2|z| /(n+1)+\mathcal{O}\left(n^{-2}\right)$ and, since K is compact, there exists a natural number $N \geqslant N_{1}$ such that $\left|1-e^{-2 i z /(n+1)}\right|<1 \forall z \in K$ if $n>N$. Then

$$
\begin{aligned}
\left(1+\left\lvert\, 1-e^{\left.-\frac{2 i z}{n+i} \right\rvert\,}\right.\right)^{n+1} & =\exp \left[(n+1) \log \left(1+\left\lvert\, 1-e^{\left.-\frac{2 i z}{n+1} \right\rvert\,}\right.\right)\right] \\
& \leqslant \exp \left[2|z|+\mathcal{O}\left(n^{-1}\right)\right]
\end{aligned}
$$

which implies, if $n>N$,

$$
\begin{equation*}
\left|e^{i z}\right|\left(1+\left|1-e^{\left.-\frac{2 i f}{n+1} \right\rvert\,}\right|\right)^{n+1} \leqslant M_{1} \quad \forall z \in K, \tag{17}
\end{equation*}
$$

M_{1} being a constant depending on N and K only.
From the obvious identity

$$
\frac{(\alpha+1)_{n}}{(n+1)^{\alpha} n!}=\frac{1}{\Gamma(\alpha+1)}(n+1)^{-\alpha} \frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)}
$$

we deduce by $[1,6.1 .46]$ that

$$
\lim _{n \rightarrow \infty} \frac{(\alpha+1)_{n}}{(n+1)^{\alpha} n!}=\frac{1}{\Gamma(\alpha+1)}
$$

and, consequently, if $n>N$,

$$
\begin{equation*}
\frac{(\alpha+1)_{n}}{(n+1)^{\alpha} n!} \leqslant M_{2} \tag{18}
\end{equation*}
$$

M_{2} being a constant depending on N only.
Finally, let M be defined as

$$
M:=\max _{0 \leqslant n \leqslant N}\left\{M_{1} M_{2}, \sup _{z \in K}\left|\frac{(-1)^{n}}{(n+1)^{\alpha}} T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}\right)\right|\right\} .
$$

Then, by (16), (17), (18),

$$
\left|\frac{(-1)^{n}}{(n+1)^{\alpha}} T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}\right)\right| \leqslant M \quad \forall n \geqslant 0, \quad \forall z \in K,
$$

which means that the respective sequence of functions is uniformly bounded on K. Hence, by well known theorems (e.g., [2, p. 166)]), the convergence in (13) is uniform on compact subsets of \mathbb{C} and we are done.

It seems to be difficult to prove Lemma 4 if $\alpha \in(-1,0]$ by the techniques used so far. Thus we must apply new methods! In particular, the functions T_{n} and the related expressions have to be viewed as functions in the additional complex variable α.

Lemma 5. Let T_{n} and J_{v} be defined as above and $z \in \mathbb{C}, \alpha \in \mathbb{C}, n \geqslant 0$. Furthermore let

$$
\begin{aligned}
f_{n}(z, \alpha):= & \frac{(n+1)^{-\alpha}(\alpha+1)_{n}}{n!} e^{i z} \sum_{k=0}^{n+1}\binom{n+1}{k} \\
& \times \frac{\left(\frac{\alpha}{2}\left(1+i \tan \frac{z}{2 n+2}\right)\right)_{k}}{(\alpha)_{k}}(-1)^{k}\left(1-e^{\left.-\frac{2 i}{n+1}\right)^{k}},\right. \\
F(z, \alpha):= & \frac{\sqrt{\pi}}{2^{\alpha} \Gamma\left(\frac{\alpha+2}{2}\right)}\left(\frac{z}{2}\right)^{\frac{1-\alpha}{2}} J_{\frac{\alpha-1}{2}}(z) .
\end{aligned}
$$

Then, for arbitrary but fixed $n \geqslant 0$,

$$
\begin{equation*}
(-1)^{n}(n+1)^{-\alpha} T_{n}\left(4 \sin ^{2} \frac{z}{2 n+2}, \alpha\right)=f_{n}(z, \alpha) \tag{19}
\end{equation*}
$$

for all $z \in \mathbb{C}$ and all $\alpha \in \mathbb{C}$. Moreover, both $f_{n}(z, \alpha)$ and $F(z, \alpha)$ are entire functions of z for every $\alpha \in \mathbb{C}$ and entire functions of α for every $z \in \mathbb{C}$. $\left(f_{n}(z, \alpha)\right.$ has a removable singularity if $z=(n+1)(2 m+1) \pi, m \in \mathbb{Z}$, or $\alpha=j, j \leqslant 0, j \in \mathbb{Z}$. In these points $f_{n}(z, \alpha)$ may be defined by its limit.)

Proof. Equation (15) establishes (19) for all $z \in \mathbb{C}$ and every $\alpha \in \mathbb{R}$, $\alpha>0$. Since the left-hand side of (19) is obviously entire in z and entire in α (see (5)), (19) follows by analytic continuation; as to the singularities of $f_{n}(z, \alpha)$, we use the same argument as in the proof of Lemma 2. In particular, $f_{n}(z, \alpha)$ clearly is entire in z and entire in α.

The assertion concerning $F(z, \alpha)$ follows from [1, 6.1.3; 11, p. 57].
Lemma 6. Let $f_{n}(z, \alpha)$ be defined as in Lemma 5 and $E:=\{\alpha \in \mathbb{C}| | \alpha \mid<1\}$. Let $K \subseteq \mathbb{C}$ be an arbitrary but fixed compact subset of \mathbb{C}. Then there exists a constant $M>0$ depending on K only such that

$$
\left|f_{n}(z, \alpha)\right| \leqslant M \quad \forall z \in K, \quad \forall \alpha \in E, \quad \forall n \geqslant 0
$$

Proof. Let $z \in K$ and $\alpha \in E$. Since K is compact, there exists a number $N_{1} \in \mathbb{N}$ such that $|1+i \tan (z /(2 n+2))| \leqslant 2 \forall z \in K$ and, consequently,

$$
\frac{\left|\left(\frac{\alpha}{2}\left(1+i \tan \frac{z}{2 n+2}\right)\right)_{k}\right|}{\left|(\alpha)_{k}\right|} \leqslant \begin{cases}1, & 0 \leqslant k \leqslant 1 \tag{20}\\ k!/(|\alpha+1| \cdots|\alpha+k-1|), & 2 \leqslant k \leqslant n+1\end{cases}
$$

if $n>N_{1}$.

The obvious inequality $(j+\operatorname{Re} \alpha)^{2}>(j-1)^{2}, j \geqslant 1$, implies $|\alpha+j|>j-1$, $j \geqslant 1$, and hence

$$
\frac{k!}{|\alpha+1| \cdots|\alpha+k-1|} \leqslant \frac{k(k-1)}{|\alpha+1|}, \quad 2 \leqslant k \leqslant n+1,
$$

which may be applied to (20).
Using the identity

$$
\sum_{k=2}^{n+1}\binom{n+1}{k} k(k-1) w^{k}=(n+1) n w^{2}(1+w)^{n-1}, \quad w \in \mathbb{C},
$$

which is a consequence of the Binomial Theorem, we finally obtain for the sum in $f_{n}(z, \alpha)$, if $n>N_{1}$,

$$
\begin{align*}
\left|\sum_{k=0}^{n+1}\right| \leqslant & \frac{1}{|\alpha+1|}\left[|\alpha+1|+|\alpha+1|(n+1) \left\lvert\, 1-e^{\left.-\frac{2 i z}{n+1} \right\rvert\,}\right.\right. \\
& \left.+(n+1) n \left\lvert\, 1-e^{-\left.\frac{2 i \hbar}{n+1}\right|^{2}}\left(1+\left\lvert\, 1-e^{\left.-\frac{2 i z}{n+1} \right\rvert\,}\right.\right)^{n-1}\right.\right] . \tag{21}
\end{align*}
$$

In the same way as in the proof of Lemma 4 we conclude that $\left|1-e^{-2 i z /(n+1)}\right| \leqslant 2|z| /(n+1)+\mathcal{O}\left(n^{-2}\right)$ and that $\left(1+\left|1-e^{-2 i z /(n+1)}\right|\right)^{n-1}$ is bounded from above for all $z \in K$ if $n>N_{2} \geqslant N_{1}$. Moreover, $|\alpha+1|<2$ holds for all $\alpha \in E$. These facts, applied to (21), yield the following estimate if $n>N_{2}$,

$$
\begin{equation*}
\left|f_{n}(z, \alpha)\right| \leqslant M_{1}\left|\frac{(n+1)^{-\alpha}(\alpha+1)_{n}}{n!(\alpha+1)}\right| \quad \forall z \in K, \quad \forall \alpha \in E, \tag{22}
\end{equation*}
$$

M_{1} being a constant depending on N_{2} and K only.
Next we consider the sequence of functions [11, Chap. 2, 1.3]

$$
\Gamma_{n}(w):=\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{w-1} d t=\frac{n!n^{w}}{w(w+1) \cdots(w+n)}, \quad n \in \mathbb{N},
$$

defined in $H:=\{w \in \mathbb{C} \mid$ Re $w>0\}$ and converging to $\Gamma(w)$. Since

$$
\left|\Gamma_{n}(w)\right| \leqslant \int_{0}^{n} e^{-t} t^{R e w-1} d t \leqslant \Gamma(\text { Re } w)
$$

the $\Gamma_{n}(w)$ are uniformly bounded on every compact subset of H and thus $\lim _{n \rightarrow \infty} \Gamma_{n}(w)=\Gamma(w)$ holds uniformly on compact subsets of H.

Let $S:=\{w \in \mathbb{C}| | w-2 \mid \leqslant 1\} \subseteq H$. Since S is compact and $\Gamma(w) \neq$ $0 \forall w \in H$, there exists a real constant $d>0$ such that $|\Gamma(w)| \geqslant d \forall w \in S$. On
the other hand, the uniform convergence of the Γ_{n} on S implies that there exists a number $N \in \mathbb{N}$ (Let $N \geqslant N_{2}$ in addition!) such that $\left|\Gamma(w)-\Gamma_{n}(w)\right|$ $<d / 2$ for all $w \in S$ if $n>N$. Hence it follows that

$$
\begin{equation*}
\left|\Gamma_{n}(w)\right|>d / 2 \quad \forall w \in S, \quad \forall n>N . \tag{23}
\end{equation*}
$$

Let us apply now (23) to our problem!
Since $|\alpha+j|>j-1, j \geqslant 1$ (see above), we obtain by (23) and a short computation

$$
\begin{aligned}
\left|\frac{n!(\alpha+1)}{(n+1)^{-\alpha}(\alpha+1)_{n}}\right| & =\left|\Gamma_{n+1}(\alpha+2)\right| \frac{|\alpha+n+1||\alpha+n+2||\alpha+n+3|}{(n+1)^{3}} \\
& >\frac{d}{2} \frac{n(n+1)(n+2)}{(n+1)^{3}} \geqslant \frac{3 d}{8}
\end{aligned}
$$

for all $\alpha \in E$ and $n>N$. Hence it follows that there exists a constant $M_{2}>0$ such that

$$
\begin{equation*}
\left|\frac{(n+1)^{-\alpha}(\alpha+1)_{n}}{n!(\alpha+1)}\right|<M_{2} \quad \forall \alpha \in E \tag{24}
\end{equation*}
$$

if $n>N$. Let M be defined as

$$
M:=\max _{0 \leqslant n \leqslant N}\left\{M_{1} M_{2}, \sup _{\substack{z \in K \\ \alpha \in E}}\left|f_{n}(z, \alpha)\right|\right\} .
$$

Then, by (22) and (24), the assertion of the lemma follows and we are done.

Our last lemma extends Lemma 4 to values of α from the interval $(-1,0]$.

Lemma 7. Let f_{n} and F be defined as in Lemma 5 (observe also (19)) and let $\alpha \in \mathbb{R}, \alpha>-1$. Then

$$
\lim _{n \rightarrow \infty} f_{n}(z, \alpha)=F(z, \alpha)
$$

holds uniformly on compact subsets of the complex z plane.
Proof. First let $z \in \mathbb{C}$ be arbitrary but fixed. By Lemma 5, the functions $f_{n}(z, \alpha)$ are holomorphic functions of α in the unit disc E and, by Lemma 6, they are uniformly bounded on compact subsets of E. Moreover, by Lemma 4 , the sequence $f_{n}(z, \alpha)$ is converging on the interval $(0,1)$. Then, a combination of Montel's theorem and Vitali's theorem [2, p. 166]
implies that the functions (of α) $f_{n}(z, \alpha)$ converge uniformly on compact subsets of E and, consequently, the limit function $G(z, \alpha):=\lim _{n \rightarrow \infty}$ $f_{n}(z, \alpha)$ is a holomorphic function of α in E. On the other hand, by Lemma 5, $F(z, \alpha)$ is a holomorphic function (of α) in E, too. Since $G(z, \alpha)=F(z, \alpha)$ for $\alpha \in(0,1)$, it thus follows by analytic continuation that $G(z, \alpha)=F(z, \alpha)$ for all $\alpha \in E$. Hence the limit relation $\lim _{n \rightarrow \infty} f_{n}(z, \alpha)=$ $F(z, \alpha)$ holds for all $\alpha \in E$ and therefore, in particular, for $\alpha \in(-1,0]$. Since $z \in \mathbb{C}$ was arbitrary, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(z, \alpha)=F(z, \alpha) \quad \forall z \in \mathbb{C}, \quad \forall \alpha \in(-1,0] . \tag{25}
\end{equation*}
$$

Now let $\alpha \in(-1,0]$ be arbitrary but fixed. By Lemma 5, the functions $f_{n}(z, \alpha)$ are entire functions of z and, by Lemma 6, they are uniformly bounded on compact subsets of the z plane. As in the proof of Lemma 4 we conclude that the convergence in (25) is uniform on compact subsets of the z plane. Together with Lemma 4 this proves the assertion of the lemma.

We are ready now to prove the theorem.
Proof of the Theorem. Let $\alpha \in \mathbb{R}, \alpha>-1$ be arbitrary but fixed. First we need some information about the zeros of the functions (of z) $f_{n}(z, \alpha)=: f_{n}(z)$ and $F(z, \alpha)=: F(z)$.

Obviously, the zeros of $f_{n}(z)$ are the zeros of $T_{n}(z):=T_{n}(z, \alpha)$ (cf. (19)). Since the $T_{n}(x), n \geqslant 0$, constitute a system of orthogonal polynomials (cf. (5)), all these zeros are real and simple. Let x_{n} be the smallest zero of $T_{n}(z)$. Then $x_{n}=1 /\left[\gamma_{n}(\alpha)\right]^{2}>0$ (cf. Chapter 1).

The representation of $J_{(\alpha-1) / 2}(z)$ as a series [11, p. 57] shows that $F(0) \neq 0$. Consequently, $F(z) \neq 0$ on the interval $\left[0, j_{(\alpha-1) / 2,1}\right)$; the zero $j_{(\alpha-1) / 2,1}$ is a simple zero of $F(z)[1,9.5]$.

The following considerations rely on the Theorem of Hurwitz and some of its corollaries.

Lemma 7 and [7, Corollary 4.10e] imply that there exists a sequence $\left\langle z_{n}\right\rangle$ such that $\lim _{n \rightarrow \infty} z_{n}=j_{(\alpha-1) / 2,1}$ and $T_{n}\left(4 \sin ^{2}\left(z_{n} /(2 n+2)\right)\right)=0$. Let $y_{n}:=4 \sin ^{2}\left(z_{n} /(2 n+2)\right)$. Since all the zeros of $T_{n}(z)$ are real and x_{n} is the smallest one, we conclude that $0<x_{n} \leqslant y_{n}$.

Clearly, the convergent sequence $\left\langle z_{n}\right\rangle$ is bounded. Hence there exists a number $N_{1} \in \mathbb{N}$ such that $\left|z_{n} /(2 n+2)\right|<\pi / 2$ if $n>N_{1}$. This implies that $z_{n} \in \mathbb{R}$ if $n>N_{1}$, since $\sin \left(z_{n} /(2 n+2)\right) \in \mathbb{R}$. Moreover, let N_{1} be sufficiently large such that $0<z_{n} /(2 n+2)<\pi / 2$ if $n>N_{1}$. (Observe that $z_{n} \rightarrow j_{(\alpha-1) / 2,1}>$ 0 as $n \rightarrow \infty$!)

Assume that $x_{n}<y_{n}$ for infinitely many $n>N_{1}$, say $n=n_{j}, j \in \mathbb{N}$. Then there exists a sequence $\left\langle z_{n_{j}}^{\prime}\right\rangle$ such that $x_{n_{j}}=4 \sin ^{2}\left(z_{n_{j}}^{\prime} /\left(2 n_{j}+2\right)\right)$ and
$0<z_{n_{j}}^{\prime}<z_{n_{j}} \forall j \in \mathbb{N}$. Since $\left\langle z_{n_{j}}\right\rangle$ is bounded, there exists a point of accumulation for the sequence $\left\langle z_{n_{j}}^{\prime}\right\rangle$, say z_{0}. This point obviously has the properties $0 \leqslant z_{0} \leqslant j_{(\alpha-1) / 2,1}$ and, by [7, Theorem 4.10d], $F\left(z_{0}\right)=0$. Since $F(z)$ does not vanish on the interval $\left[0, j_{(\alpha-1) / 2,1}\right), z_{0}$ cannot be smaller than $j_{(\alpha-1) / 2,1}$. But if $z_{0}=j_{(\alpha-1) / 2,1}$, then every neighbourhood of $j_{(\alpha-1) / 2,1}$ contains at least two different zeros of $T_{n_{j}}\left(4 \sin ^{2}\left(z /\left(2 n_{j}+2\right)\right)\right)$, namely $z_{n_{j}}$ and $z_{n_{j}}^{\prime}$. This implies, by [7, Theorem 4.10d], that the zero $j_{(\alpha-1) / 2,1}$ of $F(z)$ cannot be simple. Contradiction! Thus we have to drop the above assumption and we conclude that there exists a natural number $N>N_{1}$ such that $x_{n}=y_{n}$ for all $n>N$. Then, if $n>N$,

$$
x_{n}=4 \sin ^{2} \frac{z_{n}}{2 n+2}=\frac{z_{n}^{2}}{(n+1)^{2}}+\mathcal{O}\left(n^{-4}\right)
$$

which implies

$$
\lim _{n \rightarrow \infty} n^{2} x_{n}=\lim _{n \rightarrow \infty} z_{n}^{2}=\left(j \frac{\alpha-1}{2}, 1\right)^{2} .
$$

Since $x_{n}=1 /\left[\gamma_{n}(\alpha)\right]^{2}$, we are done.

ACKNOWLEDGMENTS

The author thanks Professor G. Schmeißer who drew his attention to Pollaczek polynomials, and Professor L. Reich and Professor J. Schwaiger for some valuable comments.

REFERENCES

1. M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions," Dover, New York, 1965.
2. H. Behnke und F. Sommer, "Theorie der analytischen Funktionen einer komplexen Veränderlichen," Springer-Verlag, Berlin/Heidelberg/New York, 1976.
3. T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon \& Breach, New York/London/Paris, 1978.
4. P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987), 490-494.
5. P. Dörfler, An extremal problem concerning a Markov-type inequality, SIAM J. Math. Anal. 22 (1991), 792-795.
6. P. Dörfler, Über die bestmögliche Konstante in Markov-Ungleichungen mit LaguerreGewicht, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 200 (1991), 13-20.
7. P. Henrici, "Applied and Computational Complex Analysis," Vol. 1, Wiley, New York/London, 1974.
8. M. E. H. Ismail, Asymptotics of Pollaczek polynomials and their zeros, SIAM J. Math. Anal. 25 (1994), 462-473.
9. G. V. Milovanović, An extremal problem for polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 94 (1985), 423-426.
10. G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, "Topics in Polynomials: Extremal Problems, Inequalities, Zeros," World Scientific, Singapore, 1994.
11. F. W. J. Olver, "Asymptotics and Special Functions," Academic Press, New York, 1974.
12. R. Remmert, "Funktionentheorie 2," 2. Auflage, Springer-Verlag, Berlin/Heidelberg/ New York, 1995.
13. E. Schmidt, Über die nebst ihren Ableitungen orthogonalen Polynomensysteme and das zugehörige Extremum, Math. Ann. 119 (1944), 165-204.
14. P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica (Cluj) 2 (1960), 373-378.
