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Let || · || be the weighted L2-norm with Laguerre weight w(t)=tae−t, a > −1. Let
Pn be the set of all complex polynomials whose degree does not exceed n, and
cn(a) :=supp ¥ Pn (||pŒ||/||p||). We show that cn(a)/nQ (j(a−1)/2, 1)−1 as nQ., where
jn, 1 is the first positive zero of the Bessel function Jn(z). © 2002 Elsevier Science (USA)
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1

Let Pn denote the set of all complex polynomials whose degree does not
exceed n. For p ¥ Pn and arbitrary but fixed a ¥ R, a > −1, let the weighted
L2-norm with (generalized) Laguerre weight be defined by

||p|| :=3F.
0
|p(t)|2 tae−t dt4

1/2

.

In this paper we consider

cn(a) :=sup
p ¥ Pn

||pŒ||
||p||

, n ¥N, (1)

the best possible constant in the Markov type inequality

||pŒ|| [ c ||p||, p ¥ Pn.

If a=0, the case of the classical Laguerre weight, cn(0) is well known.



In 1944, Schmidt [13] obtained estimates that are asymptotically sharp.
Some years later, Turán [14] found the exact value

cn(0)=12 sin
p

4n+2
2−1, n ¥N.

In particular, the above-mentioned results yield

lim
nQ.

cn(0)
n
=
2
p
. (2)

For a different proof of (2) see also [5].
If a > −1 is arbitrary, little is known. Dörfler [6] presented lower and

upper bounds for cn(a),

n(n+1)
2(a+1)

−
4(n−1)
3(a+2)

−
(n−1)(n−2)
2(a+3)

[ [cn(a)]2 [
n(n+1)
2(a+1)

, n ¥N, (3)

from which he obtained

1

`(a+1)(a+3)
[ lim inf

nQ.

cn(a)
n

[ lim sup
nQ.

cn(a)
n

[
1

`2(a+1)
. (4)

The bounds (3) were derived by a method which had been developed in
[4], viewing cn as an eigenvalue of a certain matrix. By an analogous
method, in [10, pp. 574–576], the following result was achieved: 1/[cn(a)]2

is the smallest zero of the polynomial Tn(x)=Tn(x, a) which is defined
recursively by

Tn+1(x)=(x−dn) Tn(x)−l
2
nTn−1(x), n \ 0;

T−1(x) :=0, T0(x) :=1;

d0 :=1+a, dn :=2+
a

n+1
, n \ 1;

l0 > 0 arbitrary, l
2
n :=1+

a

n
, n \ 1.

(5)

The Tn(x, a) constitute a system of monic orthogonal polynomials for each
a > −1 (which is obvious by Favard’s theorem [3, p. 21]).
Before presenting our theorem, an interesting related problem should be

mentioned. If Pn is restricted to the class Wn of (real) polynomials of exact
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degree n, all coefficients of which are nonnegative, the analogous problem
for Cn(a) :=supp ¥Wn (||pŒ||/ ||p||) was solved by Milovanović [9]

Cn(a)=˛
1/(2+a)(1+a), −1 < a [ an,
n2/(2n+a)(2n+a−1), an [ a <.,

where an :=
1
2 (n+1)

−1 [(17n2+2n+1)1/2−3n+1]. Notice that Cn(a) is
bounded for each a > −1 as nQ. which is rather surprising in view of (4).

2

We are ready now to state our theorem.

Theorem. Let cn(a) be defined as in (1). Let jn, 1 be the first positive zero
of the Bessel function of the first kind of order n, Jn(z). Then

lim
nQ.

cn(a)
n
=(ja−1

2 , 1
)−1.

Remark 1. Since jn, 1=p/2 if n=−1/2, the theorem yields (2) in the
case a=0.
Concerning (4), we would like to mention without proof that (jn, 1)−1 is quite

close to the arithmeticmean of the bounds given there if n=(a−1)/2.

Remark 2. It seems to be very difficult to derive the exact value of
cn(a) for arbitrary n and a. The reason is that the knowledge of cn(a)
would imply the knowledge of a zero of certain Pollaczek polynomials—as
the proof of our theorem will show. To know such a zero, however, would
be a very surprising result.

3

The proof of the above theorem requires several preparatory lemmas.

Lemma 1. Let Pln(x; a, b) be the nth Pollaczek polynomial as defined in
[3, p. 184] and Tn(x, a) the polynomial as defined in (5) and a ¥ R, a ] 0.
Then

Tn(z, a)=(−1)n
(n+1)
a

P
a

2
n+1
11− z

2
;−
a

2
,
a

2
2 (6)

holds for all z ¥ C and n \ −1.
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Proof. The Pollaczek polynomials Pn(x) :=Pln(x; a, b) are defined by
the recurrence formula [3, p. 184]

(n+1) Pn+1(x)=2[(a+l+n) x+b] Pn(x)−(n+2l−1) Pn−1(x), n \ 0;

P−1(x) :=0, P0(x) :=1. (7)

Inserting for l, a and b the respective values and substituting 1−x/2 for x
in the above formula, a comparison with (5) leads to (6) for z=x ¥ R.
From this, the assertion follows by analytic continuation. L

Remark 3. The choice l=−a=b=a/2 of the parameters in Pln(x; a, b)
causes the corresponding Pollaczek polynomials to be no longer orthogo-
nal. In particular, the nth polynomial Pn(x) has degree n−1 for n \ 1. This
is the reason why in (6) Tn is represented by Pn+1.

Lemma 2. Let 2F1(a, b; c; z) be the hypergeometric function and l ¥ R,
l > 0. Then

Pln(cos w;−l, l)=
(2l)n
n!

e inw 2F1 1−n, l 11+i tan
w
2
2 ; 2l; 1−e−2iw2 (8)

holds for all w ¥ C and n \ 0. (If w=(2m+1) p, m ¥ Z, then the right-hand
side of (8) may be defined by its limit as wQ (2m+1) p.)

Proof. By [8, p. 462] the polynomials Pln(x;−l+e, l) are orthogonal if
e > 0 and have the representation

Pln(cos h;−l+e, l)=
(2l)n
n!

e inh 2F1(−n, l+it(h); 2l; 1−e−2ih), (9)

where t(h)=[l(1− cos h)+e cos h]/sin h. From (7) we deduce that the left-
hand side of (9) depends continuously on e. Obviously, the same is true for
the right-hand side of (9), because 2F1 is a finite sum of finite products in e.
So, as eQ 0, (9) yields (8) for w=h, 0 [ h < p. Finally, analytic continua-
tion gives the desired result for all w ] (2m+1) p, m ¥ Z. These points,
however, are removable singularities, because the left-hand side of (8) is an
entire function. Hence, the limits as wQ (2m+1) p, m ¥ Z, exist and the
right-hand side of (8) must be replaced by the limits in these points. L

The following lemma is based on work done by Ismail [8].
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Lemma 3. Let Jn(z) be the Bessel function of the first kind of order n and
l ¥ R, l > 0. Then

lim
nQ.

n1−2lPln 1cos
z
n
;−l, l2=`p 21−2l

C(l)
1 z
2
2
1
2−l

Jl− 12(z) (10)

pointwise for all z ¥ C.

Proof. If Re a < 1 and Re c > Re b > 0, the hypergeometric function
admits the representation [11, Chap. 5, Sect. 9]

2F1(a, b; c; z)=
C(c)

C(b) C(c−b)
F
1

0
tb−1(1−t)c−b−1 (1−zt)−a dt (11)

for all z ¥ C. In view of (8) set a :=−n, b :=l(1+i tan(w/2)), c :=2l.
Then Re a < 1 and, obviously, there exists a number r > 0 such that
Re c > Re b > 0 if |w| < r. Thus, Lemma 2 and (11) yield an integral repre-
sentation for Pln(cos w;−l, l) if |w| < r. This representation—with the
respective choice of the parameters a and b—is the starting point of the
considerations in [8, Chap. 2]. So, we may proceed in a quite similar way
as in [8] and omit details here.
First set t=: (1+v)/2; this gives

n!C 1l 11+i tan w
2
22 C 1l 11−i tan w

2
22

21−2lC(2l+n)(cos w)n

×Pln(cos w;−l, l)=An(w)+An(−w), (12)

where

An(w) :=F
1

0
(1−v2)l−1 11+v

1−v
2 il tan

w
2

(1−iv tan w)n dv.

Equation (12) holds if |w| < r.
Let z ¥ C be arbitrary but fixed, and replace w by z/n in (12). Since

z/nQ 0, tan(z/2n)Q 0 and

(1−iv tan(z/n))n=exp[−ivz+O(n−1)]

as nQ., we conclude that

An(z/n)Q F
1

0
(1−v2)l−1 e−ivz dv
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and, consequently,

An(z/n)+An(−z/n)Q 2 F
1

0
(1−v2)l−1 cos(vz) dv

as nQ.. This integral can be expressed by a Bessel function [1, 9.1.20].
Thus, we finally arrive at

lim
nQ.

[An(z/n)+An(−z/n)]=`p C(l) 1
z
2
2
1
2−l

Jl− 12(z).

As to the left-hand side of (12) (w replaced by z/n), the following
asymptotic relations hold as nQ. : n!/C(2l+n) ’ n1−2l [1, 6.1.46] and,
obviously, [cos(z/n)]nQ 1.
The combination of these results establishes (10) and completes the proof

of the lemma. L

The function (z/2)−n Jn(z) is entire in z for all n ¥ C [11, p.57]. Thus, in
(10) a sequence of entire functions converges pointwise to a limit function
which is entire, too. But yet, the convergence of holomorphic functions to a
holomorphic limit function is not necessarily uniform on compact subsets
[12, Chap. 12, Sect. 3].
In our next lemma we deal with the functions Tn and show the respective

uniform convergence on compact subsets of C.

Lemma 4. Let Tn(x, a) be the polynomials as defined in (5) and a ¥ R,
a > 0. Then

lim
nQ.

(−1)n

(n+1)a
Tn 14 sin2

z
2n+2

, a2= `p

2aC 1a+2
2
2
1 z
2
2
1−a
2

J a−1
2
(z) (13)

holds uniformly on compact subsets of the complex z plane.

Proof. Let a be fixed and Tn(z, a)=: Tn(z). From Lemma 1 and the well
known identity 2−2 cos w=4 sin2(w/2), w ¥ C, we deduce that

Tn 14 sin2
z

2n+2
2=(−1)n

(n+1)
a

P
a

2
n+1
1cos z

n+1
;−
a

2
,
a

2
2 (14)

holds for all z ¥ C and n \ 0. From this, (13) can be derived easily by the
aid of Lemma 3—for the present, the convergence understood as a
pointwise one.
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Concerning the uniform convergence on compact subsets of C we show
that the respective sequence of functions is uniformly bounded on compact
subsets of C. In view of that we first derive a suitable representation of Tn.
Lemma 2 and (14) lead to a representation of Tn by the hypergeometric

function 2F1. Then, the notation of 2F1 as a finite sum [1, 15.4.1] and the
two obvious identities

(n+1)(a)n+1
a(n+1)!

=
(a+1)n
n!

,
(−n−1)k

k!
=Rn+1

k
S (−1)k, n \ 0, 0 [ k [ n+1,

yield the representation

Tn 14 sin2
z

2n+2
2=(−1)n

(a+1)n
n!

e iz

× C
n+1

k=0

Rn+1
k
S
1a
2
11+i tan z

2n+2
22
k

(a)k
(−1)k (1−e−

2iz
n+1)k

(15)

for all z ¥ C and n \ 0. (As to the points z=(n+1)(2m+1) p, m ¥ Z, see
Lemma 2.)
Now letK be an arbitrary but fixed compact subset of C and z ¥K. SinceK

is compact, there exists a number N1 ¥N such that |1+i tan(z/(2n+2))| [
2 -z ¥K and, consequently,

:1a
2
11+i tan z

2n+2
22
k

:

|(a)k |
[ 1, 0 [ k [ n+1,

if n > N1. (Observe that a ¥ R, a > 0 by assumption!) Hence, passing over
to the absolute values on either side of (15), the Binomial Theorem can be
applied to the sum. Thus, (15) together with the above estimates imply that

:Tn 14 sin2
z

2n+2
2: [ (a+1)n

n!
|e iz| (1+|1−e−

2iz
n+1|)n+1, n > N1. (16)

Obviously |1−e−2iz/(n+1)| [ 2 |z|/(n+1)+O(n−2) and, since K is compact,
there exists a natural number N \N1 such that |1−e−2iz/(n+1)| < 1 -z ¥K if
n > N. Then

(1+|1−e−
2iz
n+1|)n+1=exp[(n+1) log(1+|1−e−

2iz
n+1|)]

[ exp[2 |z|+O(n−1)]
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which implies, if n > N,

|e iz| (1+|1−e−
2iz
n+1|)n+1 [M1 -z ¥K, (17)

M1 being a constant depending on N and K only.
From the obvious identity

(a+1)n
(n+1)a n!

=
1

C(a+1)
(n+1)−a

C(n+1+a)
C(n+1)

we deduce by [1, 6.1.46] that

lim
nQ.

(a+1)n
(n+1)a n!

=
1

C(a+1)

and, consequently, if n > N,

(a+1)n
(n+1)a n!

[M2, (18)

M2 being a constant depending on N only.
Finally, letM be defined as

M := max
0 [ n [N

3M1M2, sup
z ¥K

: (−1)n
(n+1)a

Tn 14 sin2
z

2n+2
2: 4 .

Then, by (16), (17), (18),

: (−1)n
(n+1)a

Tn 14 sin2
z

2n+2
2: [M -n \ 0, -z ¥K,

which means that the respective sequence of functions is uniformly
bounded on K. Hence, by well known theorems (e.g., [2, p. 166)]), the
convergence in (13) is uniform on compact subsets of C and we are
done. L

It seems to be difficult to prove Lemma 4 if a ¥ (−1, 0] by the techniques
used so far. Thus we must apply new methods! In particular, the functions
Tn and the related expressions have to be viewed as functions in the
additional complex variable a.
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Lemma 5. Let Tn and Jn be defined as above and z ¥ C, a ¥ C, n \ 0.
Furthermore let

fn(z, a) :=
(n+1)−a (a+1)n

n!
e iz C

n+1

k=0

Rn+1
k
S

×

1a
2
11+i tan z

2n+2
22
k

(a)k
(−1)k (1−e−

2iz
n+1)k,

F(z, a) :=
`p

2aC 1a+2
2
2
1 z
2
2
1−a
2

J a−1
2
(z).

Then, for arbitrary but fixed n \ 0,

(−1)n (n+1)−a Tn 14 sin2
z

2n+2
, a2=fn(z, a) (19)

for all z ¥ C and all a ¥ C. Moreover, both fn(z, a) and F(z, a) are entire
functions of z for every a ¥ C and entire functions of a for every z ¥ C.
(fn(z, a) has a removable singularity if z=(n+1)(2m+1) p, m ¥ Z, or
a=j, j [ 0, j ¥ Z. In these points fn(z, a) may be defined by its limit.)

Proof. Equation (15) establishes (19) for all z ¥ C and every a ¥ R,
a > 0. Since the left-hand side of (19) is obviously entire in z and entire in a
(see (5)), (19) follows by analytic continuation; as to the singularities of
fn(z, a), we use the same argument as in the proof of Lemma 2. In particu-
lar, fn(z, a) clearly is entire in z and entire in a.
The assertion concerning F(z, a) follows from [1, 6.1.3; 11, p. 57]. L

Lemma 6. Letfn(z, a) be defined as inLemma 5 andE :={a ¥ C | |a| < 1}.
Let K ı C be an arbitrary but fixed compact subset of C. Then there exists a
constantM> 0 depending on K only such that

|fn(z, a)| [M -z ¥K, -a ¥ E, -n \ 0.

Proof. Let z ¥K and a ¥ E. Since K is compact, there exists a number
N1 ¥N such that |1+i tan(z/(2n+2))| [ 2 -z ¥K and, consequently,

:1a
2
11+i tan z

2n+2
22
k

:

|(a)k |
[ ˛1, 0 [ k [ 1

k!/(|a+1| · · · |a+k−1|), 2 [ k [ n+1,
(20)

if n > N1.
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The obvious inequality (j+Re a)2 > (j−1)2, j \ 1, implies |a+j| > j−1,
j \ 1, and hence

k!
|a+1| · · · |a+k−1|

[
k(k−1)
|a+1|

, 2 [ k [ n+1,

which may be applied to (20).
Using the identity

C
n+1

k=2

Rn+1
k
S k(k−1) wk=(n+1) nw2(1+w)n−1, w ¥ C,

which is a consequence of the Binomial Theorem, we finally obtain for the
sum in fn(z, a), if n > N1,

: C
n+1

k=0

: [ 1
|a+1|

[|a+1|+|a+1| (n+1) |1−e−
2iz
n+1|

+(n+1) n |1−e−
2iz
n+1|2 (1+|1−e−

2iz
n+1|)n−1]. (21)

In the same way as in the proof of Lemma 4 we conclude that
|1−e−2iz/(n+1)| [ 2 |z|/(n+1)+O(n−2) and that (1+|1−e−2iz/(n+1)|)n−1 is
bounded from above for all z ¥K if n > N2 \N1. Moreover, |a+1| < 2
holds for all a ¥ E. These facts, applied to (21), yield the following estimate
if n > N2,

|fn(z, a)| [M1
: (n+1)−a (a+1)n

n!(a+1)
: -z ¥K, -a ¥ E, (22)

M1 being a constant depending on N2 and K only.
Next we consider the sequence of functions [11, Chap. 2, 1.3]

Cn(w) :=F
n

0

11− t
n
2n tw−1 dt= n!nw

w(w+1) · · · (w+n)
, n ¥N,

defined in H :={w ¥ C | Re w > 0} and converging to C(w). Since

|Cn(w)| [ F
n

0
e−ttRe w−1 dt [ C(Re w),

the Cn(w) are uniformly bounded on every compact subset of H and thus
limnQ. Cn(w)=C(w) holds uniformly on compact subsets of H.
Let S :={w ¥ C | |w−2| [ 1} ıH. Since S is compact and C(w) ]

0 -w ¥H, there exists a real constant d > 0 such that |C(w)| \ d -w ¥ S. On
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the other hand, the uniform convergence of the Cn on S implies that there
exists a number N ¥N (Let N \N2 in addition!) such that |C(w)−Cn(w)|
< d/2 for all w ¥ S if n > N. Hence it follows that

|Cn(w)| > d/2 -w ¥ S, -n > N. (23)

Let us apply now (23) to our problem!
Since |a+j| > j−1, j \ 1 (see above), we obtain by (23) and a short

computation

: n!(a+1)
(n+1)−a (a+1)n

:=|Cn+1(a+2)|
|a+n+1| |a+n+2| |a+n+3|

(n+1)3

>
d
2
n(n+1)(n+2)

(n+1)3
\
3d
8

for all a ¥ E and n > N. Hence it follows that there exists a constant
M2 > 0 such that

: (n+1)−a (a+1)n
n!(a+1)

: <M2 -a ¥ E (24)

if n > N. LetM be defined as

M := max
0 [ n [N

{M1M2, sup
z ¥K
a ¥ E

|fn(z, a)|}.

Then, by (22) and (24), the assertion of the lemma follows and we are
done. L

Our last lemma extends Lemma 4 to values of a from the interval
(−1, 0].

Lemma 7. Let fn and F be defined as in Lemma 5 (observe also (19))
and let a ¥ R, a > −1. Then

lim
nQ.

fn(z, a)=F(z, a)

holds uniformly on compact subsets of the complex z plane.

Proof. First let z ¥ C be arbitrary but fixed. By Lemma 5, the functions
fn(z, a) are holomorphic functions of a in the unit disc E and, by
Lemma 6, they are uniformly bounded on compact subsets of E. Moreover,
by Lemma 4, the sequence fn(z, a) is converging on the interval (0, 1).
Then, a combination of Montel’s theorem and Vitali’s theorem [2, p. 166]
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implies that the functions (of a) fn(z, a) converge uniformly on compact
subsets of E and, consequently, the limit function G(z, a) :=limnQ.
fn(z, a) is a holomorphic function of a in E. On the other hand, by
Lemma 5, F(z, a) is a holomorphic function (of a) in E, too. Since
G(z, a)=F(z, a) for a ¥ (0, 1), it thus follows by analytic continuation that
G(z, a)=F(z, a) for all a ¥ E. Hence the limit relation limnQ. fn(z, a)=
F(z, a) holds for all a ¥ E and therefore, in particular, for a ¥ (−1, 0].
Since z ¥ C was arbitrary, we obtain

lim
nQ.

fn(z, a)=F(z, a) -z ¥ C, -a ¥ (−1, 0]. (25)

Now let a ¥ (−1, 0] be arbitrary but fixed. By Lemma 5, the functions
fn(z, a) are entire functions of z and, by Lemma 6, they are uniformly
bounded on compact subsets of the z plane. As in the proof of Lemma 4
we conclude that the convergence in (25) is uniform on compact subsets of
the z plane. Together with Lemma 4 this proves the assertion of the
lemma. L

We are ready now to prove the theorem.

Proof of the Theorem. Let a ¥ R, a > −1 be arbitrary but fixed. First
we need some information about the zeros of the functions (of z)
fn(z, a)=: fn(z) and F(z, a)=: F(z).
Obviously, the zeros of fn(z) are the zeros of Tn(z) :=Tn(z, a) (cf. (19)).

Since the Tn(x), n \ 0, constitute a system of orthogonal polynomials (cf.
(5)), all these zeros are real and simple. Let xn be the smallest zero of Tn(z).
Then xn=1/[cn(a)]2 > 0 (cf. Chapter 1).
The representation of J(a−1)/2(z) as a series [11, p. 57] shows that

F(0) ] 0. Consequently, F(z) ] 0 on the interval [0, j(a−1)/2, 1); the zero
j(a−1)/2, 1 is a simple zero of F(z) [1, 9.5].
The following considerations rely on the Theorem of Hurwitz and some

of its corollaries.
Lemma 7 and [7, Corollary 4.10e] imply that there exists a sequence

OznP such that limnQ. zn=j(a−1)/2, 1 and Tn(4 sin2(zn/(2n+2)))=0. Let
yn :=4 sin2(zn/(2n+2)). Since all the zeros of Tn(z) are real and xn is the
smallest one, we conclude that 0 < xn [ yn.
Clearly, the convergent sequence OznP is bounded. Hence there exists a

number N1 ¥N such that |zn/(2n+2)| < p/2 if n > N1. This implies that
zn ¥ R if n > N1, since sin(zn/(2n+2)) ¥ R. Moreover, let N1 be sufficiently
large such that 0 < zn/(2n+2) < p/2 if n > N1. (Observe that zn Q j(a−1)/2, 1 >
0 as nQ.!)
Assume that xn < yn for infinitely many n > N1, say n=nj, j ¥N. Then

there exists a sequence Oz −njP such that xnj=4 sin2(z −nj/(2nj+2)) and
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0 < z −nj < znj -j ¥N. Since OznjP is bounded, there exists a point of accu-
mulation for the sequence Oz −njP, say z0. This point obviously has the
properties 0 [ z0 [ j(a−1)/2, 1 and, by [7, Theorem 4.10d], F(z0)=0. Since
F(z) does not vanish on the interval [0, j(a−1)/2, 1), z0 cannot be smaller than
j(a−1)/2, 1. But if z0=j(a−1)/2, 1, then every neighbourhood of j(a−1)/2, 1 con-
tains at least two different zeros of Tnj (4 sin

2(z/(2nj+2))), namely znj and
z −nj . This implies, by [7, Theorem 4.10d], that the zero j(a−1)/2, 1 of F(z)
cannot be simple. Contradiction! Thus we have to drop the above assump-
tion and we conclude that there exists a natural number N>N1 such that
xn=yn for all n > N. Then, if n > N,

xn=4 sin2
zn

2n+2
=

z2n
(n+1)2

+O(n−4)

which implies

lim
nQ.

n2xn= lim
nQ.

z2n=(j a−1
2 , 1
)2.

Since xn=1/[cn(a)]2, we are done. L
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